4.7 Article

Effect of N-n-butyl haloperidol iodide on ROS/JNK/Egr-1 signaling in H9c2 cells after hypoxia/reoxygenation

期刊

SCIENTIFIC REPORTS
卷 5, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/srep11809

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC)-Guangdong Joint Funds [U0932005]
  2. National Natural Science Foundations of China [81473215, 81072633]
  3. Central Government Special Funds Supporting the Development of Local Colleges and Universities

向作者/读者索取更多资源

Reactive oxygen species (ROS)-induced oxidative stress in cells is an important pathophysiological process during myocardial ischemia/reperfusion (I/R) injury, and the transcription factor Egr-1 is a master switch for various damage pathways during reperfusion injury. An in vitro model of myocardial I/R injury and H9c2 cardiomyoblast cells hypoxia/reoxygenation (H/R) was used to assess whether there is abnormal intracellular ROS/JNK/Egr-1 signaling. We also assessed whether N-n-butyl haloperidol (F-2), which exerts protective effects during myocardial I/R injury, can modulate this pathway. H/R induced ROS generation, JNK activation, and increased the expression of Egr-1 protein in H9c2 cells. The ROS scavengers edaravone (EDA) and N-acetyl-L-cysteine (NAC) reduced ROS level, downregulated JNK activation, and Egr-1 expression in H9c2 cells after H/R. The JNK inhibitor SP600125 inhibited Egr-1 overexpression in H9c2 cells caused by H/R. F-2 could downregulate H/R-induced ROS level, JNK activation, and Egr-1 expression in H9c2 cells in a dose-dependent manner. The ROS donor hypoxanthine-xanthine oxidase (XO/HX) and the JNK activator ANISO antagonized the effects of F-2. Therefore, H/R activates ROS/Egr-1 signaling pathway in H9c2 cells, and JNK activation plays an important role in this pathway. F-2 regulates H/R-induced ROS/JNK/Egr-1 signaling, which might be an important mechanism by which it antagonizes myocardial I/R injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据