4.7 Article

Refugial isolation and range expansions drive the genetic structure of Oxyria sinensis (Polygonaceae) in the Himalaya-Hengduan Mountains

期刊

SCIENTIFIC REPORTS
卷 5, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/srep10396

关键词

-

资金

  1. Natural Science Foundation of China [31160084, 41101058]
  2. Ph.D. Programs Foundation of Ministry of Education of China [20115303120001]

向作者/读者索取更多资源

The formation of the Mekong-Salween Divide and climatic oscillations in Pleistocene were the main drivers for the contemporary diversity and genetic structure of plants in the Himalaya-Hengduan Mountains (HHM). To identify the relative roles of the two historical events in shaping population history of plants in HHM, we investigated the phylogeographic pattern of Oxyria sinensis, a perennial plant endemic to the HHM. Sixteen chloroplast haplotypes were identified and were clustered into three phylogenetic clades. The age of the major clades was estimated to be in the Pleistocene, falling into several Pleistocene glacial stages and postdating the formation of the Mekong-Salween Divide. Range expansions occurred at least twice in the early and middle Pleistocene, but the spatial genetic distribution rarely changed since the Last Glacial Maximum. Our results suggest that temporary mountain glaciers may act as barriers in promoting the lineage divergence in Oxyria sinensis and that subsequential range expansions and secondary contacts might reshape the genetic distribution in geography and blur the boundary of population differentiation created in the earlier glacial stages. This study demonstrates that Pleistocene climatic change and mountain glaciers, rather than the Mekong-Salween Divide, play the primary role in shaping the spatial genetic structure of Oxyria sinensis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据