4.6 Review

I-BAR domains, IRSp53 and filopodium formation

期刊

SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY
卷 21, 期 4, 页码 350-356

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.semcdb.2009.11.008

关键词

I-BAR; IRSp53; Cdc42; F-actin; Membrane protrusion; Filopodia

资金

  1. A*STAR

向作者/读者索取更多资源

Filopodia and lamellipodia are dynamic actin-based structures that determine cell shape and migration. Filopodia are thought to sense the environment and direct processes such as axon guidance and neurite outgrowth. Cdc42 is a small GTP-binding protein and member of the RhoGTPase family. Cdc42 and its effector IRSp53 (insulin receptor phosphotyrosine 53 kDa substrate) have been shown to be strong inducers of filopodium formation. IRSp53 consists of an I-BAR (inverse-Bin-Amphiphysin-Rvs) domain, a Cdc42-binding domain and an SH3 domain. The I-BAR domain of IRSp53 induces membrane tubulation of vesicles and dynamic membrane protrusions lacking actin in cells. The IRSp53 SH3 domain interacts with proteins that regulate actin filament formation e. g. Mena, N-WASP, mDia1 and Eps8. In this review we suggest that the mechanism for Cdc42-driven filopodium formation involves coupling I-BAR domain-induced membrane protrusion with SH3 domain-mediated actin dynamics through IRSp53. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据