4.0 Article Proceedings Paper

Light emission from silicon nanocrystals

期刊

SEMICONDUCTORS
卷 47, 期 2, 页码 183-202

出版社

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S1063782613020103

关键词

-

向作者/读者索取更多资源

The main experimental results of studies of the photoluminescence of silicon nanocrystals and theoretical methods developed for the description of optical processes occurring in them are reviewed. Special attention is focused on silicon nanocrystals in the SiO2 matrix that were the object of most of the studies. Two fundamental theoretical methods described in detail are the multiband effective-mass method and the tight-binding method which have found wide application in simulating various processes occurring in nanostructures. A phenomenological model for excitons self-trapped on the surface of oxidized silicon nanocrystals, which has been recently developed on the basis of experimental results obtained by femtosecond spectroscopy, is reported.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据