4.0 Article

Relaxation processes in a disordered Luttinger liquid

期刊

SEMICONDUCTORS
卷 42, 期 8, 页码 994-1007

出版社

PLEIADES PUBLISHING INC
DOI: 10.1134/S1063782608080204

关键词

-

资金

  1. Center for Functional Nanostructures of the Deutsche Forschungsgemeinschaft
  2. Russian Foundation for Basic Research
  3. Program Leading Russian Scientific Schools

向作者/读者索取更多资源

The Luttinger liquid model, which describes interacting electrons in a single-channel quantum wire, is completely integrable in the absence of disorder and as such does not exhibit any relaxation to equilibrium. We consider relaxation processes induced by inelastic electron-electron interactions in a disordered Luttinger liquid, focusing on the equilibration rate and its essential differences from the electron-electron scattering rate as well as the rate of phase relaxation. In the first part of the paper, we review the basic concepts in a disordered Luttinger liquid at equilibrium. These include the elastic renormalization, dephasing, and interference-induced localization. In the second part, we formulate a conceptually important framework for systematically studying the nonequilibrium properties of a strongly correlated (non-Fermi) Luttinger liquid. We derive a coupled set of kinetic equations for the fermionic and bosonic distribution functions that describe the evolution of a nonequilibrium Luttinger liquid. Remarkably, the energy equilibration rate in the conducting disordered quantum wire (at sufficiently high temperature, when the localization effects are suppressed by dephasing) is shown to be on the order of the rate of elastic scattering off disorder, independent of the interaction constant and temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据