4.4 Article

Thermal stability of the current transport mechanisms in Ni-based Ohmic contacts on n- and p-implanted 4H-SiC

期刊

出版社

IOP Publishing Ltd
DOI: 10.1088/0268-1242/29/7/075018

关键词

4H-SiC; Ohmic contacts; thermal annealing

资金

  1. Marie Curie ITN NetFISiC (EC FP7 grant) [264613]

向作者/读者索取更多资源

Studying the temperature dependence of the electrical properties of Ohmic contacts formed on ion-implanted SiC layers is fundamental to understand and to predict the behaviour of practical devices. This paper reports the electrical characterization, as a function of temperature, of Ni-based Ohmic contacts, simultaneously formed on both n- or p-type implanted 4H-SiC. A structural analysis showed the formation of the Ni2Si phase after an annealing leading to Ohmic behaviour. The temperature-dependence of the specific contact resistance indicated that a thermionic field emission mechanism (TFE) dominates the current transport for contacts formed on p-type material, while a field emission (FE) is likely occurring in the contacts formed on n-type implanted SiC. The values of the barrier height were 0.75 eV on p-type material and 0.45 eV on n-type material. The thermal stability of the current transport mechanisms and related physical parameters has been demonstrated upon a long-term (up to 95 h) cycling in the temperature range 200-400 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据