4.4 Review

Germanium surface passivation and atomic layer deposition of high-k dielectrics-a tutorial review on Ge-based MOS capacitors

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0268-1242/27/7/074012

关键词

-

资金

  1. Bilateral Scientific and Technology Project Flanders, China [01SB1809]
  2. European Research Council under the European Union [239865]

向作者/读者索取更多资源

Due to its high intrinsic mobility, germanium (Ge) is a promising candidate as a channel material (offering a mobility gain of approximately x 2 for electrons and x 4 for holes when compared to conventional Si channels). However, many issues still need to be addressed before Ge can be implemented in high-performance field-effect-transistor (FET) devices. One of the key issues is to provide a high-quality interfacial layer, which does not lead to substantial drive current degradation in both low equivalent oxide thickness and short channel regime. In recent years, a wide range of materials and processes have been investigated to obtain proper interfacial properties, including different methods for Ge surface passivation, various high-k dielectrics and metal gate materials and deposition methods, and different post-deposition annealing treatments. It is observed that each process step can significantly affect the overall metal-oxide-semiconductor (MOS)-FET device performance. In this review, we describe and compare combinations of the most commonly used Ge surface passivation methods (e.g. epi-Si passivation, surface oxidation and/or nitridation, and S-passivation) with various high-k dielectrics. In particular, plasma-based processes for surface passivation in combination with plasma-enhanced atomic layer deposition for high-k depositions are shown to result in high-quality MOS structures. To further improve properties, the gate stack can be annealed after deposition. The effects of annealing temperature and ambient on the electrical properties of the MOS structure are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据