4.6 Review

Impact of lake-level changes on the formation of thermogene travertine in continental rifts: Evidence from Lake Bogoria, Kenya Rift Valley

期刊

SEDIMENTOLOGY
卷 60, 期 2, 页码 428-468

出版社

WILEY
DOI: 10.1111/j.1365-3091.2012.01347.x

关键词

Geothermal; hot spring; Kenya Rift; saline lake; travertine

类别

资金

  1. Natural Sciences and Engineering Research Council of Canada [RG629-08, A6090, 249565-02]
  2. Hong Kong Baptist University [FRG/08-09/II-25]
  3. Hong Kong Research Grants Council [201709]
  4. Elf Petroleum Norge AS [2231-01 ELF]

向作者/读者索取更多资源

Travertine is present at 20% of the ca 60 hot springs that discharge on Loburu delta plain on the western margin of saline, alkaline Lake Bogoria in the Kenya Rift. Much of the travertine, which forms mounds, low terraces and pool-rim dams, is sub-fossil (relict) and undergoing erosion, but calcite-encrusted artefacts show that carbonate is actively precipitating at several springs. Most of the springs discharge alkaline (pH: 8 center dot 3 to 8 center dot 9), Na-HCO3 waters containing little Ca (<2mgl1) at temperatures of 94 to 97 center dot 5 degrees C. These travertines are unusual because most probably precipitated at temperatures of >80 degrees C. The travertines are composed mainly of dendritic and platy calcite, with minor Mg-silicates, aragonite, fluorite and opaline silica. Calcite precipitation is attributed mainly to rapid CO2 degassing, which led to high-disequilibrium crystal morphologies. Stratigraphic evidence shows that the travertine formed during several stages separated by intervals of non-deposition. Radiometric ages imply that the main phase of travertine formation occurred during the late Pleistocene (ca 32 to 35ka). Periods of precipitation were influenced strongly by fluctuations in lake level, mostly under climate control, and by related changes in the depth of boiling. During relatively arid phases, meteoric recharge of ground water declines, the lake is low and becomes hypersaline, and the reduced hydrostatic pressure lowers the level of boiling in the plumbing system of the hot springs. Any carbonate precipitation then occurs below the land surface. During humid phases, the dilute meteoric recharge increases, enhancing geothermal circulation, but the rising lake waters, which become relatively dilute, flood most spring vents. Much of the aqueous Ca2+ then precipitates as lacustrine stromatolites on shallow firm substrates, including submerged older travertines. Optimal conditions for subaerial travertine precipitation at Loburu occur when the lake is at intermediate levels, and may be favoured during transitions from humid to drier conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据