4.7 Article

Short-term compost application increases rhizosphere soil carbon mineralization and stimulates root growth in long-term continuously cropped cucumber

期刊

SCIENTIA HORTICULTURAE
卷 175, 期 -, 页码 269-277

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scienta.2014.06.025

关键词

Continuously cropped cucumber; Compost; Rhizosphere soil; Carbon mineralization; Plant growth

资金

  1. Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period [2014BAD05B02]
  2. National Natural Science Foundation of China [31101580]

向作者/读者索取更多资源

Continuous cropping, a common agricultural practice in the world, often results in soil degradation and eventually lead to crop yield decline over time. Composts application has several advantages such as improving soil quality and increasing crop yields. However, little information is available regarding the effect of compost application on crop growth in continuous cropping systems. In this study, we investigated three long-term (>15 years) continuously cropped cucumber soils to examine the effect of compost application on carbon mineralization of rhizosphere soils and plant growth. All three soils were treated with/without compost, Bacillus subtilis and their combination. In general, the amounts of cumulative carbon mineralization in soils treated with compost were larger than those in untreated soils. The initial carbon mineralization rate, m(o), was significant higher in soils treated with compost than in untreated soils. Soil microbial biomass carbon (MBC) and root growth was significantly (P< 0.05) increased by the compost addition, but was not statistically (P>0.05) affected by the bacterial inoculation in all soils. In compost-treated soils, there was a higher faction of thin roots (<0.5 mm diameter) and a smaller fraction of thicker roots (>0.5 mm diameter) compared with untreated soils. Cucumber fruit yield was significantly positively correlated with the CCM and MBC values. Our results suggested that short-term compost application increases rhizosphere soil carbon mineralization and stimulates root growth in long-term continuously cropped cucumber. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据