4.5 Article

bHLH Transcription Factors That Facilitate K+ Uptake During Stomatal Opening Are Repressed by Abscisic Acid Through Phosphorylation

期刊

SCIENCE SIGNALING
卷 6, 期 280, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.2003760

关键词

-

资金

  1. Japan Society for the Promotion of Science for Young Scientists
  2. Japanese Ministry of Education, Culture, Sports, Science and Technology [21227001, 22380044]
  3. Mitsubishi Foundation
  4. Grants-in-Aid for Scientific Research [22119005, 21227001, 23370019, 22380044] Funding Source: KAKEN

向作者/读者索取更多资源

Stomata open in response to light and close after exposure to abscisic acid (ABA). They regulate gas exchange between plants and the atmosphere, enabling plants to adapt to changing environmental conditions. ABA binding to receptors initiates a signaling cascade that involves protein phosphorylation. We show that ABA induced the phosphorylation of three basic helix-loop-helix (bHLH) transcription factors, called AKSs (ABA-responsive kinase substrates; AKS1, AKS2, and AKS3), in Arabidopsis guard cells. In their unphosphorylated state, AKSs facilitated stomatal opening through the transcription of genes encoding inwardly rectifying K+ channels. aks1aks2-1 double mutant plants showed decreases in light-induced stomatal opening, K+ accumulation in response to light, activity of inwardly rectifying K+ channels, and transcription of genes encoding major inwardly rectifying K+ channels without affecting ABA-mediated stomatal closure. Overexpression of potassium channel in Arabidopsis thaliana 1 (KAT1), which encodes a major inwardly rectifying K+ channel in guard cells, rescued the phenotype of aks1aks2-1 plants. AKS1 bound directly to the promoter of KAT1, an interaction that was attenuated after ABA-induced phosphorylation. The ABA agonist pyrabactin induced phosphorylation of AKSs. Our results demonstrate that the AKS family of bHLH transcription factors facilitates stomatal opening through the transcription of genes encoding inwardly rectifying K+ channels and that ABA suppresses the activity of these channels by triggering the phosphorylation of AKS family transcription factors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据