4.5 Article

Phosphoproteomic Analysis Implicates the mTORC2-FoxO1 Axis in VEGF Signaling and Feedback Activation of Receptor Tyrosine Kinases

期刊

SCIENCE SIGNALING
卷 6, 期 271, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.2003572

关键词

-

向作者/读者索取更多资源

The vascular endothelial growth factor (VEGF) signaling pathway plays a pivotal role in normal development and also represents a major therapeutic target for tumors and intraocular neovascular disorders. The VEGF receptor tyrosine kinases promote angiogenesis by phosphorylating downstream proteins in endothelial cells. We applied a large-scale proteomic approach to define the VEGF-regulated phosphoproteome and its temporal dynamics in human umbilical vein endothelial cells and then used siRNA (small interfering RNA) screens to investigate the function of a subset of these phosphorylated proteins in VEGF responses. The PI3K (phosphatidylinositol 3-kinase)-mTORC2 (mammalian target of rapamycin complex 2) axis emerged as central in activating VEGF-regulated phosphorylation and increasing endothelial cell viability by suppressing the activity of the transcription factor FoxO1 (forkhead box protein O1), an effect that limited cellular apoptosis and feedback activation of receptor tyrosine kinases. This FoxO1-mediated feedback loop not only reduced the effectiveness of mTOR inhibitors at decreasing protein phosphorylation and cell survival but also rendered cells more susceptible to PI3K inhibition. Collectively, our study provides a global and dynamic view of VEGF-regulated phosphorylation events and implicates the mTORC2-FoxO1 axis in VEGF receptor signaling and reprogramming of receptor tyrosine kinases in human endothelial cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据