4.5 Article

An Adenosine-Mediated Signaling Pathway Suppresses Prenylation of the GTPase Rap1B and Promotes Cell Scattering

期刊

SCIENCE SIGNALING
卷 6, 期 277, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.2003374

关键词

-

资金

  1. NIH [R01 CA136799, R01 CA125122, R01 DK062066, R01 HL077707]
  2. Medical College of Wisconsin Cancer Center
  3. Wisconsin Breast Cancer Showhouse
  4. Rock River Cancer Research Foundation

向作者/读者索取更多资源

During metastasis, cancer cells acquire the ability to dissociate from each other and migrate, which is recapitulated in vitro as cell scattering. The small guanosine triphosphatase (GTPase) Rap1 opposes cell scattering by promoting cell-cell adhesion, a function that requires its prenylation, or posttranslational modification with a carboxyl-terminal isoprenoid moiety, to enable its localization at cell membranes. Thus, signaling cascades that regulate the prenylation of Rap1 offer a mechanism to control the membrane localization of Rap1. We identified a signaling cascade initiated by adenosine A2B receptors that suppressed the prenylation of Rap1B through phosphorylation of Rap1B, which decreased its interaction with the chaperone protein SmgGDS (small GTPase guanosine diphosphate dissociation stimulator). These events promoted the cytosolic and nuclear accumulation of nonprenylated Rap1B and diminished cell-cell adhesion, resulting in cell scattering. We found that nonprenylated Rap1 was more abundant in mammary tumors than in normal mammary tissue in rats and that activation of adenosine receptors delayed Rap1B prenylation in breast, lung, and pancreatic cancer cell lines. Our findings support a model in which high concentrations of extracellular adenosine, such as those that arise in the tumor microenvironment, can chronically activate A2B receptors to suppress Rap1B prenylation and signaling at the cell membrane, resulting in reduced cell-cell contact and promoting cell scattering. Inhibiting A2B receptors may be an effective method to prevent metastasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据