4.5 Article

ATM Is a Redox Sensor Linking Genome Stability and Carbon Metabolism

期刊

SCIENCE SIGNALING
卷 4, 期 167, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.2001959

关键词

-

资金

  1. Max Planck Society

向作者/读者索取更多资源

In response to oxidative stress, central carbohydrate metabolism is reconfigured so that the metabolic flux reroutes from glycolysis into the pentose phosphate pathway (PPP), which allows cells to mount an effective response to this cellular stress. The kinase ataxia telangiectasia mutated (ATM) regulates this metabolic shift in mammalian cells. Upon ATM activation, the rate-limiting PPP enzyme glucose 6-phosphate dehydrogenase (G6PDH) formed a complex with heat shock protein 27 that increased G6PDH activity, augmented NADP+ to NADPH reduction, and stimulated nucleotide synthesis. As such, ATM antagonizes the tumor suppressor p53, which is a direct inhibitor of G6PDH and the PPP. In addition to its role in DNA repair and the cell cycle, ATM is thus a component of the eukaryotic redox-sensing system. By linking genome stability, the cell cycle, and carbon catabolism, ATM emerges as a central regulator of cellular metabolism with implications for cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据