4.5 Article

Eukaryotic Protein Domains as Functional Units of Cellular Evolution

期刊

SCIENCE SIGNALING
卷 2, 期 98, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.2000546

关键词

-

向作者/读者索取更多资源

Modular protein domains are functional units that can be modified through the acquisition of new intrinsic activities or by the formation of novel domain combinations, thereby contributing to the evolution of proteins with new biological properties. Here, we assign proteins to groups with related domain compositions and functional properties, termed domain clubs, which we use to compare multiple eukaryotic proteomes. This analysis shows that different domain types can take distinct evolutionary trajectories, which correlate with the conservation, gain, expansion, or decay of particular biological processes. Evolutionary jumps are associated with a domain that coordinately acquires a new intrinsic function and enters new domain clubs, thereby providing the modified domain with access to a new cellular microenvironment. We also coordinately analyzed the covalent and noncovalent interactions of different domain types to assess the molecular compartment occupied by each domain. This reveals that specific subsets of domains demarcate particular cellular processes, such as growth factor signaling, chromatin remodeling, apoptotic and inflammatory responses, or vesicular trafficking. We suggest that domains, and the proteins in which they reside, are selected during evolution through reciprocal interactions with protein domains in their local microenvironment. Based on this scheme, we propose a mechanism by which Tudor domains may have evolved to support different modes of epigenetic regulation and suggest a role for the germline group of mammalian Tudor domains in Piwi-regulated RNA biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据