4.5 Review

Cracking the Phosphatase Code: Docking Interactions Determine Substrate Specificity

期刊

SCIENCE SIGNALING
卷 2, 期 100, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.2100re9

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM048729, GM-48728] Funding Source: Medline

向作者/读者索取更多资源

Phosphoserine- and phosphothreonine-directed phosphatases display remarkable substrate specificity, yet the sites that they dephosphorylate show little similarity in amino acid sequence. Studies reveal that docking interactions are key for the recognition of substrates and regulators by two conserved phosphatases, protein phosphatase 1 (PP1) and the Ca2+-calmodulin-dependent phosphatase calcineurin. In each case, a small degenerate sequence motif in the interacting protein directs low-affinity binding to a docking surface on the phosphatase that is distinct from the active site; several such interactions combine to confer overall binding specificity. Some docking surfaces are conserved, such as a hydrophobic groove on a face opposite the active site that serves as a major recognition surface for the RVxF motif of proteins that interact with PP1 and the Px-IxIT motif of substrates of calcineurin. Secondary motifs combine with this primary targeting sequence to specify phosphatase binding. A comprehensive interactome for mammalian PP1 was described, analysis of which defines several PP1-binding motifs. Studies of LxVP, a secondary calcineurin-binding sequence, establish that this motif is a conserved feature of calcineurin substrates and that the immunosuppressants FK506 and cyclosporin A inhibit the phosphatase by interfering with LxVP-mediated docking.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据