4.5 Article

ROCO Kinase Activity Is Controlled by Internal GTPase Function

期刊

SCIENCE SIGNALING
卷 1, 期 23, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.123pe27

关键词

-

向作者/读者索取更多资源

Small guanosine triphosphatases (GTPases) have long been known to control the activities of downstream protein kinases. Some members of a rather new multidomain protein family contain not only a GTPase domain of the ROC (Ras of complex protein) subtype but also a protein kinase domain, and both domains seem to cooperate with each other in the same polypeptide. Data now how that the kinase activity of one of these ROCO proteins depends on whether guanosine diphosphate or guanosine triphosphate (GTP) is bound and that the activity is controlled by the adjacent GTPase, which suggests a novel mechanism of intrinsic control. This ROCO family member, leucine-rich repeat kinase 2 (LRRK2), is of special interest because mutations within both its protein kinase and its GTPase domains are associated with Parkinson's disease (PD). These mutations lead to abnormally enhanced protein kinase activity, which is believed to cause or atleast contribute to neuronal damage. The crystal structure of the GTPase domain of LRRK2 has now been resolved and shows that the ROC GTPase domain is responsible for LRRK2 homodimerization in a surprising way. The structure not only offers insights into the molecular effects of some of the PD-associated mutations of LRRK2, but may also help to improve our understanding of the intrinsic control mechanism between a GTPase and a protein kinase within the same protein.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据