4.7 Article

NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 650, 期 -, 页码 2051-2062

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2018.09.115

关键词

NDVI; Growing season; Amur; Heilongjiang; Vegetation; Climate change

资金

  1. National Natural Science Foundation of China, China [31570475]
  2. Tsinghua University-Peter the Great St. Petersburg Polytechnic University Joint Scientific Research Fund [20173080026]

向作者/读者索取更多资源

Vegetation in Northern Hemisphere, being sensitive to climate change, plays an important role in the carbon cycles between land and the atmosphere. The response of vegetation to climate change was analyzed at pixel, biome and regional scale in Amur-Heilongjiang River Basin (AHRB) for growing season, spring, summer and autumn using Normalized Difference Vegetation Index and gridded climate data for the period 1982-2015. NDVI and climate variables trend detection methods and correlation analysis were applied. The potential impacts of human activities on growing season NDVI dynamics were investigated further using residual trend analysis. Results showed that at river basin scale, growing season vegetation experienced a discontinuous greening trend with two reversals, demonstrating that NDVI initially increased to mid-1990s, then declined to mid-2000s, and finally rebounded to 2015. This may be attributed to the shifting between drought and wet trends, indicating growing season NDVI was mainly regulated by precipitation. Temperature was the dominant factor on affecting spring vegetation growth while autumn NDVI showed negative correlation with precipitation due to the relation of precipitation with sunshine hours available for photosynthesis. The response of vegetation growth to climatic variations varied among vegetation types. Grassland NDVI exhibited positive correlation with precipitation in all time ranges. NDVI of needleleaved forest, broadleaved forest, mixed forest and woodland were positively correlated with temperature in all seasons, while showing significant negative correlation with autumn precipitation. Residual trend analysis revealed that human activities might lead to the vegetation degradation in China farming zone of AHRB. Fires also play an important role in regulating vegetation dynamics in the region. Results of our analysis can be used by national governments from three countries of AHRB in managing and negotiating vegetation resources of the region. (C) 2018 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据