4.7 Article

γ-Al2O3-based nanocomposite adsorbents for arsenic(V) removal: Assessing performance, toxicity and particle leakage

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 473, 期 -, 页码 207-214

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2013.12.020

关键词

Composites; Adsorbents; Macroporous polymers; Nanoparticles; Aluminium oxide; Risk assessment

资金

  1. EC Marie-Curie Industry-Academia Partnerships and Pathways Program [PIAP-GA-2008-230676 CARBOSORB]
  2. IEF Marie Curie fellowship (Polar clean project) from the FP7 People program [n274985]

向作者/读者索取更多资源

The generation and development of effective adsorption materials for arsenic removal are urgently needed due to acute arsenic contamination of water sources in many regions around the world. In the search for these new adsorbents, the application of nanomaterials or nanocomposites, and especially the use of nanoparticles (NPs), has proven increasingly attractive. While the adsorptive performance of a range of nanocomposite and nanomaterial-based systems has been extensively reviewed in previously-published literature, the stability of these systems in terms of NP release, i.e. the ability of the nanomaterial or nanocomposite to retain incorporated NPs, is less well understood. Here we examine the performance of nanocomposites comprised of aluminium oxide nanopartides (AluNPs) incorporated in macroporous polyacrylamide-based cryogels (n-Alu-cryo, where n indicates the percentage of AluNPs in the polymer material (n = 0-6%, w/v)) for As(V) adsorption, and evaluate AluNP leakage before and after the use of these materials. A range of techniques is utilised and assessed (SEM, TEM, mass weight change, PIXE and in vitro toxicity studies). The 4-Alu-cryo nanocomposite was shown to be optimal for minimising AluNP losses while maximising As(V) removal. From the same nanocomposite we were further able to show that NP losses were not detectable at the AluNP concentrations used in the study. Toxicity tests revealed that no cytotoxic effects could be observed. The cryogel-AluNPs composites were not only effective in As(V) removal but also in immobilising the AluNPs. More challenging flow-through conditions for the evaluation of NP leakage could be included as a next step in a continued study assessing particle loss and subsequent toxicity. (c) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据