4.7 Article

Emissions of two phthalate esters and BDE 209 to indoor air and their impact on urban air quality

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 470, 期 -, 页码 527-535

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2013.10.023

关键词

Emission; Polyvinylchloride; Urban model; Exposure; Ventilation; Fate

资金

  1. Miljofonden
  2. Sveriges Ingenjorer
  3. Swedish Environmental Protection Agency

向作者/读者索取更多资源

Estimated emissions of decabrominated diphenyl ether (BDE 209) and the two phthalate esters diethylhexyl phthalate (DEHP) and diisononyl phthalate (DINP) to indoor air in the Stockholm conurbation, Sweden were used to assess the contribution of chemical outflows from the indoor environment to urban outdoor air pollution for these substances, by applying the recently developed Stockholm MUltimedia URban fate (SMURF) model. Emission rates of DINP from PVC materials were measured and published emission rates of DEHP were adapted to Swedish conditions. These were used as input to the model, as well as recently reported estimates of BDE 209 emissions to indoor air in Stockholm. Model predicted concentrations were compared to empirical monitoring data obtained from the literature and from additional measurements of phthalates in ventilation outlets and urban air performed in the current study. The predicted concentrations of the phthalates DINP and DEHP in indoor air and dust were within a factor of 1.5-10 of the measured concentrations. For BDE 209, predicted indoor concentrations were within the measured ranges, but measured concentrations showed a much larger variability. An adjusted emission scenario to better fit observed concentrations indoors was employed for DEHP and final outcomes resulted in estimated indoor emissions of 250 (50-1250), 2.9 (0.58-15), and 0.068 (0.014-034) kg year(-1) for DEHP, DINP and BDE 209. These emissions could not explain the observed concentrations in urban air of the phthalates, suggesting an underestimation of background inflow or existence of additional sources in the outdoor environment. For BDE 209, the assessment indicates that the Stockholm indoor environment contributes about 25% to the air pollution load in inflowing background air, but additional monitoring data in urban air are needed to confirm this conclusion. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据