4.7 Article

Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 481, 期 -, 页码 498-508

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2014.02.093

关键词

Biochar; Trace elements; Heavy metals; Soil remediation; Leaching; Plant uptake

资金

  1. Austrian Research Promotion Agency (FFG) [825438]

向作者/读者索取更多资源

Biochar application to agricultural soils has been increasingly promoted worldwide. However, this may be accompanied by unexpected side effects in terms of trace element (TE) behavior. We used a greenhouse pot experiment to study the influence of woodchip-derived biochar (wcBC) on leaching and plant concentration of various TEs (Al, Cd, Cu, Pb, Mn, As, B, Mo, Se). Three different agricultural soils from Austria (Planosol, Cambisol, Chemozem) were treated with wcBC at application rates of 1 and 3% (w/w) and subsequently planted with mustard (Sinapis alba L.). Soil samples were taken 0 and 7 months after the start of the pot experiment, and leachate water was collected twice (days 0 and 54). The extractability (with NH4NO3) of cationic TEs was decreased in the (acidic) Planosol and Cambisol after wcBC application, whereas in the (neutral) Chemozem it hardly changed. In contrast, anionic TEs were mobilized in all three soils, which resulted in higher anion concentrations in the leachates. The application of wcBC had no effect on Al and Pb in the mustard plants, but increased their B and Mo concentrations and decreased their Cd, Cu and Mn concentrations. A two-way analysis of variance showed significant interactions between wcBC application rate and soil type for most TEs, which indicates that different soil types may react differently upon wcBC application. Correlation and partial correlation analyses revealed that TE behavior was primarily related to soil pH, whereas the involvement of other factors such as electrical conductivity (EC), organic carbon (OC) content and dissolved organic carbon (DOC) was found to be more soil and TE-specific. The application of wcBC may be a useful strategy for the remediation of soils with elevated levels of cationic TEs, but could lead to deficiencies of cationic micronutrients and enhance short-term translocation of anionic TEs towards the groundwater at high leaching rates. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据