4.7 Article

Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in NE Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 461, 期 -, 页码 618-626

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2013.05.026

关键词

Perfluorooctane sulfonate; Perfluorooctanoate; LC-MS/MS; Drinking water treatment plant; Advanced treatment; Reverse osmosis

资金

  1. CDTI, Ingenio Programme under CENIT call

向作者/读者索取更多资源

Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are two emerging contaminants that have been detected in all environmental compartments. However, while most of the studies in the literature deal with their presence or removal in wastewater treatment, few of them are devoted to their detection in treated drinking water and fate during drinking water treatment. In this study, analyses of PFOS and PFOA have been carried out in river water samples and in the different stages of a drinking water treatment plant (DWTP) which has recently improved its conventional treatment process by adding ultrafiltration and reverse osmosis in a parallel treatment line. Conventional and advanced treatments have been studied in several pilot plants and in the DWTP, which offers the opportunity to compare both treatments operating simultaneously. From the results obtained, neither preoxidation, sand filtration, nor ozonation, removed both perfluorinated compounds. As advanced treatments, reverse osmosis has proved more effective than reverse electrodialysis to remove PFOA and PFOS in the different configurations of pilot plants assayed. Granular activated carbon with an average elimination efficiency of 64 +/- 11% and 45 +/- 19% for PFOS and PFOA, respectively and especially reverse osmosis, which was able to remove >= 99% of both compounds, were the sole effective treatment steps. Trace levels of PFOS (3.0-21 ng/L) and PFOA (<4.2-5.5 ng/L) detected in treated drinking water were significantly lowered in comparison to those measured in precedent years. These concentrations represent overall removal efficiencies of 89 +/- 22% for PFOA and 86 +/- 7% for PFOS. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据