4.7 Article

Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 450, 期 -, 页码 72-82

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2013.02.004

关键词

Climate change; Hydrologic simulation; Stream temperature; SWAT; Watershed

向作者/读者索取更多资源

The assessment of hydrologic responses to climate change is required in watershed management and planning to protect water resources and environmental quality. This study is designed to evaluate and enhance watershed modeling approach in characterizing climate change impacts on water supply and ecosystem stressors. Soil and Water Assessment Tool (SWAT) was selected as a base model, and improved for the CO2 dependence of potential evapotranspiration and stream temperature prediction. The updated model was applied to quantify the impacts of projected 21st century climate change in the northern Coastal Ranges and western Sierra Nevada, which are important water source areas and aquatic habitats of California. Evapotranspiration response to CO2 concentration varied with vegetation type. For the forest-dominated watersheds in this study, only moderate (1-3%) reductions on evapotranspiration were predicted by solely elevating CO2 concentration under emission scenarios A2 and B1. Modeling results suggested increases in annual average stream temperature proportional to the projected increases in air temperature. Although no temporal trend was confirmed for annual precipitation in California, increases of precipitation and streamflow during winter months and decreases in summers were predicted. Decreased streamflow during summertime, together with the higher projected air temperature in summer than in winter, would increase stream temperature during those months and result in unfavorable conditions for cold-water species. Compared to the present-day conditions, 30-60 more days per year were predicted with average stream temperature >20 degrees C during 2090s. Overall, the hydrologic cycle and water quality of headwater drainage basins of California, especially their seasonality, are very sensitive to projected climate change. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据