4.7 Article

Embryonic toxicity changes of organic nanomaterials in the presence of natural organic matter

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 426, 期 -, 页码 423-429

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2012.03.050

关键词

Fullerene (nC(60)); Multiwalled carbon nanotube; Nanotoxicity; Japanese medaka embryos; Natural organic matter

资金

  1. National Research Foundation of Korea
  2. Ministry of Education, Science and Technology [2009-0082745]
  3. GIST
  4. National Research Foundation of Korea [2009-0082745] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

When elucidating the potential fate and bioavailability of nanomaterials (NMs) in an aquatic system, it is important to consider the interactions between NMs and natural organic matter (NOM). The present study compared the toxicities of carbon-based NMs, with disparate physicochemical properties. on Japanese medaka (Oryzias latipes) embryos after the addition of NOM. The measured embryonic toxicity parameters were mortality, malformation and hatching delay. Various physicochemical properties of water suspended fullerenes (nC(60)) and multi-walled carbon nanotubes (MWNTs) were modulated by organic exchange (Tol/nC(60)), stirring over time (Aqu/nC(60)) and acid treatment (f-MWNTs) followed by characterization. Tol/nC(60) produced relatively more hydrophobic surfaces and exhibited smaller closed spherical agglomerates than Aqu/nC(60). Acid-treated f-MWNTs displayed functionalized hydrophilic surfaces compared to raw MWNTs (r-MWNTs). The resultant embryonic toxicities, in the absence of NOM, were ranked in the order: f-MWNTs > Tol/nC(60) > Aqu/nC(60). As the NOM concentrations were increased, no changes in embryonic toxicities were observed on exposure of Aqu/nC(60) and r-MWNTs; whereas, the toxicities were reduced on exposure to Tol/nC(60) and f-MWNTs, due to a disappearance of hydrophobic primary spherical aggregates and partial coating, respectively. These data suggest that in the presence of NOM, the morphological differences of NMs, as well as their physicochemical properties, play a significant role in their reactions and subsequent medaka embryonic nanotoxicity. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据