4.7 Article

Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 409, 期 20, 页码 4351-4360

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2011.07.015

关键词

Pharmaceuticals; Personal care products; Wastewater treatment plant; Occurrence; Removal

资金

  1. Ministry of Education, Science and Technology at the University of Ulsan
  2. National Research Foundation of Korea [핵C6B1609] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Occurrence and removal efficiencies of 20 pharmaceuticals and personal care products (PPCPs) including antibiotics, hormones, and several other miscellaneous pharmaceuticals (analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, and stimulants) were investigated in five wastewater treatment plants (WWTPs) of Ulsan, the largest industrial city of Korea. The compounds were extracted from wastewater samples by solid-phase extraction (SPE) and analyzed by High-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The results showed that acetaminophen, atenolol and lincomycin were the main individual pollutants usually found in concentrations over 10 mu g/L in the sewage influent. In the WWTPs, the concentrations of analgesic acetaminophen, stimulant caffeine, hormones estriol and estradiol decreased by over 99%. On the contrary, the antibiotic sulfamethazine, the antihypertensive metoprolol, and the antiepileptic carbamazepine exhibited removal efficiencies below 30%. Particularly, removal of antibiotics was observed to vary between -11.2 and 69%. In the primary treatment (physicochemical processes), the removal of pharmaceuticals was insignificant (up to 28%) and removal of majority of the pharmaceuticals occurred during the secondary treatment (biological processes). The compounds lincomycin, carbamazepine, atenolol, metoprolol, and triclosan showed better removal in WWTPs employing modified activated sludge process with co-existence of anoxic-oxic condition. Further investigation into the design and operational aspects of the biological processes is warranted for the efficient removal of PPCPs, particularly antibiotics, to secure healthy water resource in the receiving downstream, thereby ensuring a sustainable water cycle management. (C) 2011 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据