4.7 Article

Removal of airborne nanoparticles by membrane coated filters

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 409, 期 22, 页码 4868-4874

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2011.08.011

关键词

Nanoparticle; Membrane filter; Filtration efficiency; Face velocity; Model

资金

  1. National Institute of Environmental Health Sciences [1RC2ES018741-01, 100029-D]
  2. Center for Filtration Research: 3M Corporation, Boeing Company
  3. Cummins Filtration Inc.
  4. Donaldson Company, Inc.
  5. Entegris Inc
  6. Hollingsworth Vose Company
  7. Samsung Semiconductor Inc.
  8. Shigematsu Works CO., LTD
  9. TSI Inc.
  10. W. L Gore Associates
  11. National Institute for Occupational Safety and Health (NIOSH)

向作者/读者索取更多资源

The increasing amount of nanoparticles with the development of nanotechnology gives rise to concerns about potential negative impact on the environment and health hazards posed to humans. Membrane filter is an effective media to control nanoparticles. Three filters coated with polytetrafluoroethylene (PTFE) membrane were investigated in this study. A series of experiments on the filter efficiency and relevant parameters such as the particle size and face velocity were carried out. The data show that the efficiency curves for the membrane filters demonstrate the typical shape of v for particle sizes from 10 to 300 nm at face velocities from 0.3 to 15 cm/s. Membrane filters with larger pore sizes have larger Most Penetrating Particles Sizes (MPPS), and the MPPS decreases with increasing face velocity. The efficiencies decrease with increasing face velocity for particle sizes from 10 to 300 nm. We present the filtration efficiency data as a novel three-dimensional graph to illustrate its dependence on the particle size and face velocity. The membrane coated filter can be considered as two combined layers, one fibrous layer and one membrane layer. We develop a new filtration efficiency model which is a combination of the models for the two layers. Results from the model calculation agree with experimental data well. The study can help to optimize the filter product and to determine the operational parameters of filters, thus contributing to reduction of air pollution by rapidly emerging nanoparticles. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据