4.7 Article

Soot-driven reactive oxygen species formation from incense burning

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 409, 期 22, 页码 4781-4787

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2011.07.041

关键词

CB; DEP; Incense; Physicochemistry; ROS; Soot

向作者/读者索取更多资源

This study investigated the effects of reactive oxygen species (ROS) generated as a function of the physicochemistry of incense particulate matter (IPM), diesel exhaust particles (DEP) and carbon black (CB). Microscopical and elemental analyses were used to determine particle morphology and inorganic compounds. ROS was determined using the reactive dye, Dichlorodihydrofluorescin (DCFH), and the Plasmid Scission Assay (PSA), which determine DNA damage. Two common types of soot were observed within IPM, including nano-soot and micro-soot, whereas DEP and CB mainly consisted of nano-soot. These PM were capable of causing oxidative stress in a dose-dependent manner, especially IPM and DEP. A dose of IPM (36.6-102.3 mu g/ml) was capable of causing 50% oxidative DNA damage. ROS formation was positively correlated to smaller nano-soot aggregates and bulk metallic compounds, particularly Cu. These observations have important implications for respiratory health given that inflammation has been recognised as an important factor in the development of lung injury/diseases by oxidative stress. This study supports the view that ROS formation by combustion-derived PM is related to PM physicochemistry, and also provides new data for IPM. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据