4.7 Article

Isotopic signatures for natural versus anthropogenic Pb in high-altitude Mt. Everest ice cores during the past 800 years

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 412, 期 -, 页码 194-202

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2011.10.002

关键词

Pb isotopes; Ice cores; Mt. Everest; Anthropogenic Pb contamination; Leaded gasoline; South Asia

资金

  1. KOPRI, Korea [PP09010]
  2. INHA University [INHA-42819-01]
  3. [200703411501]
  4. [40825017]
  5. [SKLCS-ZZ-2008-06]

向作者/读者索取更多资源

A long-term record, extending back 800 years (1205 to 2002 AD), of the Pb isotopic composition ((206)Pb/(207)Pb and (208)Pb/(207)Pb) as well as Pb concentrations from high altitude Mt. Everest ice cores has the potential to identify sources and source regions affecting natural and anthropogenic Pb deposition in central Asia. The results show that the regional natural background Pb isotope signature (similar to 120 for (206)Pb/(207)Pb and similar to 2.50 for (208)Pb/(207)Pb) in the central Himalayas was dominated by mineral dust over the last similar to 750 years from 1205 to 1960s. mostly originating from local sources with occasional contributions of long-range transported dust probably from Sahara desert and northwestern India. Since the 1970s, the Pb isotope ratios are characterized by a continuous decline toward less radiogenic ratios with the least mean ratios of 1.178 for (206)Pb/(207)Pb and 2.471 for (208)Pb/(207)Pb in the period 1990-1996. The depression of the (206)Pb/(207)Pb and (208)Pb/(207)Pb values during the corresponding periods is most likely due to an increasing influence of less radiogenic Pb of anthropogenic origin mainly from leaded gasoline used in South Asia (India as well as possibly Bangladesh and Nepal). From 1997 to 2002, isotopic composition tends to show a shift to slightly more radiogenic signature. This is likely attributed to reducing Pb emissions from leaded gasoline in source regions, coinciding with the nationwide reduction of Pb in gasoline and subsequent phase-out of leaded gasoline in South Asia since 1997. An interesting feature is the relatively high levels of Pb concentrations and enrichment factors (EF) between 1997 and 2002. Although the reason for this feature remains uncertain, it would be probably linked with an increasing influence of anthropogenic Pb emitted from other sources such as fossil fuel combustion and non-ferrous metal production. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据