4.7 Article

Genes and environment - Striking the fine balance between sophisticated biomonitoring and true functional environmental genomics

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 400, 期 1-3, 页码 142-161

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2008.07.023

关键词

Gene expression profiling; Hormesis; Epigenetics; Ecotoxicogenomics; Functional genomics; Daphnia; Caenorhabditis elegans; Earthworms; Danio rerio; Fish; Arabidopsis; Sediment toxicity; Mixture toxicity; Drugs; Gene ontology

向作者/读者索取更多资源

This article provides an overview how the application of the gene profiling (mainly via microarray technology) can be used in different organisms to address issues of environmental importance. Only recently, environmental sciences, including ecotoxicology, and molecular biology have started to mutually fertilize each other. This conceptual blend has enabled the identification of the interaction between molecular events and whole animal and population responses. Likewise, striking the fine balance between biomonitoring and functional environmental genomics will allow legislative and administrative measures to be based on a more robust platform. The application of DNA microarrays to ecotoxicogenomics links ecotoxicological effects of exposure with expression profiles of several thousand genes. The gene expression profiles are altered during toxicity, as either a direct or indirect result of toxicant exposure and the comparison of numerous specific expression profiles facilitates the differentiation between intoxication and true responses to environmental stressors. Furthermore, the application of microarrays provides the means to identify complex pathways and strategies that an exposed organism applies in response to environmental stressors. This review will present evidence that the widespread phenomenon of hormesis has a genetic basis that goes beyond an adaptive response. Some more practical advantages emerge: the toxicological assessment of complex mixtures, such as effluents or sediments, as well as drugs seems feasible, especially when classical ecotoxicological tests have failed. The review of available information demonstrates the advantages of microarray application to environmental issues spanning from bacteria, over algae and spermatophytes, to invertebrates (nematode Caenorhabditis elegans, crustacea Daphnia spp., earthworms), and various fish species. Microarrays have also highlighted why populations of a given species respond differently to similar contaminations. Furthermore, this review points at inherent limits of microarrays which may not yet have been properly addressed, namely epigenetics, which may explain heritable variation observed in natural population that cannot be explained by differences in the DNA sequence. Finally, the review will address promising future molecular biological developments which may supersede the microarray technique. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据