4.6 Article

A genetic programming predictive model for parametric study of factors affecting strength of geopolymers

期刊

RSC ADVANCES
卷 5, 期 104, 页码 85630-85639

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra16286f

关键词

-

向作者/读者索取更多资源

In this paper, the effect of different factors including mixture proportions and curing conditions on the compressive strength of fly ash-based geopolymers was studied. Several parameters were used to construct a predictive model based on genetic programming, which delivers the compressive strength of specimens with reasonable accuracy. A parametric study was carried out to evaluate the effect of each individual parameter on the strength of the geopolymers. The results obtained by the model showed that changing the percentage of aggregates in the standard range, and age of curing are ineffective on the compressive strength of the considered geopolymers. On the other hand, increasing the percentage of fly ash, curing temperature and liquid to ash weight ratio were shown to improve the compressive strength. Another important parameter namely, sodium silicate to alkali hydroxide weight ratio had an optimum value of 2.5 to deliver the highest strength. All of the model predictions were in accordance with the experimental results and those available in the literature for many types of fly ash-based geopolymers. It was concluded that fly ash (sourced from Sarawak, Malaysia) can be suitably used to synthesize geopolymers when the producing factors are precisely determined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据