4.7 Article

Influence of orifice-to-wall distance on synthetic jet vortex rings impinging on a fixed wall

期刊

SCIENCE CHINA-TECHNOLOGICAL SCIENCES
卷 56, 期 7, 页码 1798-1806

出版社

SCIENCE PRESS
DOI: 10.1007/s11431-013-5256-8

关键词

vortex ring; orifice-to-wall distance; impingement; wall; secondary vortex; statistical characteristic

资金

  1. National Natural Science Foundation of China [11202015]

向作者/读者索取更多资源

Two-dimensional particle image velocimetry (PIV) is used to investigate the influence of the orifice-to-wall distance on synthetic jet vortex rings impinging on a fixed wall. Both evolutions of vortical structures and statistical characteristics of flow fields at different orifice-to-wall distances are presented. It is found that different orifice-to-wall distances have different effects in terms of the vortex strength and impinging speed when the vortex rings are approaching the wall. The secondary vortex ring can be observed within the shear layer only when the dimensionless orifice-to-wall distance is close to or less than the dimensionless stroke length. Consequently, an appropriate orifice-to-wall distance plays a vital role in the sense of impingement effect. The statistical analysis of the flow field indicates that a wall jet forms after impingement, while both the decay rate of the maximum radial velocity and the spreading rate of the half-width decrease with the increasing orifice-to-wall distance. The non-dimensional wall jet velocity profiles at different orifice-to-wall distances all exhibit self-similar behaviors, which is consistent with the theoretical solution of the laminar wall jet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据