4.6 Article

Ab initio strain engineering of graphene: opening bandgaps up to 1 eV

期刊

RSC ADVANCES
卷 5, 期 54, 页码 43810-43814

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra03422a

关键词

-

向作者/读者索取更多资源

We employ electronic structure calculations based on Density Functional Theory (DFT) to strain engineer graphene's bandgap. Specifically, working in the finite deformation setting, we traverse the three-dimensional in-plane strain space to determine states capable of opening significant bandgaps in graphene. We find that biaxial strains comprising of tension in the zigzag direction and compression in the armchair direction are particularly effective at tuning graphene's electronic properties, with resulting bandgaps of up to 1 eV. Notably, we ascertain that a 11% strain in the zigzag direction in combination with -20% in the armchair direction produces a bandgap of approximately 1 eV. We also establish that uniaxial and isotropic biaxial strains of up to +/- 20% are incapable of opening bandgaps, while shear strains of +/- 20% can introduce bandgaps of around 0.4 eV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据