4.7 Article

In-depth study on aminolysis of poly(ε-caprolactone): Back to the fundamentals

期刊

SCIENCE CHINA-CHEMISTRY
卷 55, 期 11, 页码 2419-2427

出版社

SCIENCE PRESS
DOI: 10.1007/s11426-012-4540-y

关键词

poly(epsilon-caprolactone); aminolysis; surface modification; biomaterials

资金

  1. National Natural Science Foundation of China [20934003]
  2. National Basic Research Program of China [2011CB606203]

向作者/读者索取更多资源

The aminolysis can effectively introduce primary amine (-NH2) groups onto polyester materials, enabling a variety of subsequent surface biofunctionalization reactions. However, less attention has been paid to the basic knowledge of aminolysis reaction in terms of reaction kinetics and its influences on materials properties. In this study, taking the widely used poly(E >-caprolactone) (PCL) as a typical example, the influences of diamines and solvent property on the surface -NH2 density are firstly assessed by using X-ray photoelectron spectroscopy (XPS) and colorimetric analysis. Results show that smaller diamine molecules and nonpolar alcohols could accelerate the reaction. The reaction kinetics with 1,6-hexanediamine is further investigated as a function of temperature, reaction time, and diamine concentration. During the initial stage, the reaction shows a 1(st) order kinetics with the diamine concentration and has an activation energy of 54.5 kJ/mol. Ionization state of the -NH2 groups on the PCL surface is determined, revealing that the pKa of -NH3 (+) (< 5) is much lower than that of the corresponding diamine molecules in solution. After aminolysis, surface hydrophilicity of PCL membrane is significantly enhanced, while surface elastic modulus and average molecular weight are decreased to some extent, and others such as weight, surface morphology and bulk mechanical strength are not apparently changed. The introduced -NH2 groups are found to be largely lost at 37 A degrees C, but can be mostly maintained at low temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据