4.5 Article

Temperature-responsive electrospun nanofibers for 'on-off' switchable release of dextran

期刊

出版社

NATL INST MATERIALS SCIENCE
DOI: 10.1088/1468-6996/13/6/064203

关键词

thermoresponsive nanofiber; N-isopropylacrylamide (NIPAAm); thermal crosslinking; drug delivery system; electrospinning; smart nanofiber

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan [10013481]
  2. Grants-in-Aid for Scientific Research [22680042, 23650295] Funding Source: KAKEN

向作者/读者索取更多资源

We propose a new type of 'smart' nanofiber (NF) with dynamically and reversibly tunable properties for the 'on-off' controlled release of the polysaccharide dextran. The fibers are produced by electrospinning copolymers of N-isopropylacrylamide (NIPAAm) and N-hydroxymethylacrylamide (HMAAm). The OH groups of HMAAm are subsequently crosslinked by thermal curing. The copolymers were successfully fabricated into a well-defined nanofibrous structure with a diameter of about 600-700 nm, and the fibers preserved their morphology even after thermal curing. The resulting crosslinked NFs showed rapid and reversible volume changes in aqueous media in response to cycles of temperature alternation. The fibrous morphology was maintained for the crosslinked NFs even after the cycles of temperature alternation, while non-crosslinked NFs collapsed and dispersed quickly in the aqueous solution. Dextran-containing NFs were prepared by electrospinning the copolymers blended with fluorescein isothiocyanate (FITC)-dextran, and the 'on-off' switchable release of FITC-dextran from the crosslinked NFs was observed. Almost all the FITC-dextran was released from the NFs after six heating cycles, whereas only a negligible amount of FITC-dextran was evolved during the cooling process. The reported incorporation of smart properties into NFs takes advantage of their extremely large surface area and porosity and is expected to provide a simple platform for on-off drug delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据