4.8 Article

Artificial Muscles from Fishing Line and Sewing Thread

期刊

SCIENCE
卷 343, 期 6173, 页码 868-872

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1246906

关键词

-

资金

  1. Air Force Office of Scientific Research [FA9550-12-1-0211]
  2. Air Force [AOARD-10-4067, AOARD-13-4119]
  3. Office of Naval Research MURI [N00014-08-1-0654]
  4. Robert A. Welch Foundation [AT-0029]
  5. Creative Research Initiative Center for Bio-Artificial Muscle
  6. Korea-U.S. Air Force Cooperation Program [2012-00074]
  7. Australian Research Council
  8. Australian National Fabrication Facility, China National 973 Project [2007CB936203, S2009061009]
  9. NSF China [51003036]
  10. Natural Sciences and Engineering Research Council of Canada
  11. National Research Foundation of Korea [2013K1A3A1A32035592, 2006-0050629] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The high cost of powerful, large-stroke, high-stress artificial muscles has combined with performance limitations such as low cycle life, hysteresis, and low efficiency to restrict applications. We demonstrated that inexpensive high-strength polymer fibers used for fishing line and sewing thread can be easily transformed by twist insertion to provide fast, scalable, nonhysteretic, long-life tensile and torsional muscles. Extreme twisting produces coiled muscles that can contract by 49%, lift loads over 100 times heavier than can human muscle of the same length and weight, and generate 5.3 kilowatts of mechanical work per kilogram of muscle weight, similar to that produced by a jet engine. Woven textiles that change porosity in response to temperature and actuating window shutters that could help conserve energy were also demonstrated. Large-stroke tensile actuation was theoretically and experimentally shown to result from torsional actuation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据