4.8 Article

mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity

期刊

SCIENCE
卷 345, 期 6204, 页码 1579-+

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1250684

关键词

-

资金

  1. Netherlands Organization of Scientific Research [863.13.011]
  2. ERC [310372]
  3. European Research Council under European Union [2012-322698]
  4. National Institute of General Medical Sciences [5P30GM103415-03, 1P30GM106394-01]
  5. National Institute of Allergy and Infectious Diseases [R01AI81838]
  6. Helmsley Trust
  7. JDRF
  8. [DK43351]
  9. [DK097485]

向作者/读者索取更多资源

Epigenetic reprogramming of myeloid cells, also known as trained immunity, confers nonspecific protection from secondary infections. Using histone modification profiles of human monocytes trained with the Candida albicans cell wall constituent beta-glucan, together with a genome-wide transcriptome, we identified the induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, high lactate production, and a high ratio of nicotinamide adenine dinucleotide (NAD+) to its reduced form (NADH), reflecting a shift in metabolism with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1-Akt-HIF-1 alpha (hypoxia-inducible factor-1 alpha) pathway. Inhibition of Akt, mTOR, or HIF-1 alpha blocked monocyte induction of trained immunity, whereas the adenosine monophosphate-activated protein kinase activator metformin inhibited the innate immune response to fungal infection. Mice with a myeloid cell-specific defect in HIF-1 alpha were unable to mount trained immunity against bacterial sepsis. Our results indicate that induction of aerobic glycolysis through an Akt-mTOR-HIF-1 alpha pathway represents the metabolic basis of trained immunity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据