4.6 Article

Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries

期刊

RSC ADVANCES
卷 5, 期 39, 页码 30793-30800

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra01729g

关键词

-

资金

  1. National Science Foundation [CMMI-1231287]
  2. Zhejiang Provincial Natural Science Foundation [LY12E03005]

向作者/读者索取更多资源

Lithium-ion battery is currently the dominant energy storage technology for electronic devices and electric vehicles. However, the predictable rising cost of lithium raw materials has attracted increasing interest in less expensive rivals, such as sodium-ion battery. In this work, a tin antimony (SnSb) alloy-filled porous carbon nanofiber composite was prepared as a sodium-ion battery anode material by a simple electrospinning method with subsequent thermal treatment. The spinning solution contained antimony tin oxide nanoparticles as the SnSb alloy precursor, polyacrylonitrile as the carbon precursor, and polymethyl methacrylate (PMMA) as the pore generator. The resultant SnSb@C nanofiber composite formed a continuous conductive network, which was favorable for enhancing its electrochemical performance. The presence of the SnSb alloy significantly increased the energy storage capacity of the composite due to its high theoretical capacity. The porous structure created by the decomposition of the PMMA polymer provided a free space to buffer the volume change of the SnSb alloy during the sodiation-desodiation process. The resultant SnSb@C nanofiber composite exhibited high capacity and a stable rate capability, and it was demonstrated to be a promising anode candidate for sodium-ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据