4.8 Article

Shape Memory and Superelastic Ceramics at Small Scales

期刊

SCIENCE
卷 341, 期 6153, 页码 1505-1508

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1239745

关键词

-

资金

  1. [9011102294]
  2. [9011102296]

向作者/读者索取更多资源

Shape memory materials are a class of smart materials able to convert heat into mechanical strain (or strain into heat) by virtue of a martensitic phase transformation. Some brittle materials such as intermetallics and ceramics exhibit a martensitic transformation but fail by cracking at low strains and after only a few applied strain cycles. Here we show that such failure can be suppressed in normally brittle martensitic ceramics by providing a fine-scale structure with few crystal grains. Such oligocrystalline structures reduce internal mismatch stresses during the martensitic transformation and lead to robust shape memory ceramics that are capable of many superelastic cycles up to large strains; here we describe samples cycled as many as 50 times and samples that can withstand strains over 7%. Shape memory ceramics with these properties represent a new class of actuators or smart materials with a set of properties that include high energy output, high energy damping, and high-temperature usage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据