4.6 Article

Improved carrier mobility and bandgap tuning of zinc doped bismuth oxide

期刊

RSC ADVANCES
卷 5, 期 4, 页码 2504-2510

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra12494d

关键词

-

资金

  1. Council for Scientific and Industrial Research (CSIR), Government of India
  2. KSCSTE, Government of Kerala
  3. CSIR, Government of India

向作者/读者索取更多资源

The present work attempts to synthesize bismuth oxide and zinc doped bismuth oxide using a citrate gel method to tune the electronic and optical properties suitable for different opto-electronic applications. Techniques like ICP-AES and EDAX were used to determine the compositions of metal in the doped samples. Thermal analyses such as TGA-DTA were used to study the phase change and decomposition temperature of the samples to fix the sintering temperature. Later, the phase purity and crystallinity of sintered and unsintered metal oxides were determined from powder X-ray analysis. The morphology and average particle sizes were obtained from SEM imaging. The doped bismuth oxide shows an increase in bandgap with increase in zinc percentage, which is estimated from DRS measurements. Bulk carrier concentration, sheet concentration, resistivity, conductivity and charge carrier mobility of doped and undoped samples were obtained from hall measurements and the data showed improvement in conductivity and carrier mobility on doping. Increase in carrier mobility and conductivity is attributed to relatively fewer grain barriers due to the smaller size of the doped samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据