4.8 Article

A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production

期刊

SCIENCE
卷 333, 期 6044, 页码 863-866

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1205864

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
  2. U.S. Department of Energy

向作者/读者索取更多资源

Reduction of acids to molecular hydrogen as a means of storing energy is catalyzed by platinum, but its low abundance and high cost are problematic. Precisely controlled delivery of protons is critical in hydrogenase enzymes in nature that catalyze hydrogen (H-2) production using earth-abundant metals (iron and nickel). Here, we report that a synthetic nickel complex, [Ni((P2NPh)-N-Ph)(2)](BF4)(2), ((P2NPh)-N-Ph = 1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane), catalyzes the production of H2 using protonated dimethylformamide as the proton source, with turnover frequencies of 33,000 per second (s(-1)) in dry acetonitrile and 106,000 s(-1) in the presence of 1.2 M of water, at a potential of -1.13 volt (versus the ferrocenium/ferrocene couple). The mechanistic implications of these remarkably fast catalysts point to a key role of pendant amines that function as proton relays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据