4.8 Article

Giant Piezoelectricity on Si for Hyperactive MEMS

期刊

SCIENCE
卷 334, 期 6058, 页码 958-961

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1207186

关键词

-

资金

  1. NSF [ECCS-0708759, DMR-0907191, DMR-0723032]
  2. David Lucile Packard Fellowship
  3. National Security Science and Engineering Faculty Fellowship
  4. Multidisciplinary University Research Initiative through the Air Force Office for Scientific Research (AFOSR) [FA9550-08-1-0337]
  5. U.S. Department of Energy (DOE) [DE-FG02-07ER46416]
  6. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  7. AFOSR [FA9550-10-1-0524]

向作者/读者索取更多资源

Microelectromechanical systems (MEMS) incorporating active piezoelectric layers offer integrated actuation, sensing, and transduction. The broad implementation of such active MEMS has long been constrained by the inability to integrate materials with giant piezoelectric response, such as Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT). We synthesized high-quality PMN-PT epitaxial thin films on vicinal (001) Si wafers with the use of an epitaxial (001) SrTiO3 template layer with superior piezoelectric coefficients (e(31,f) = -27 +/- 3 coulombs per square meter) and figures of merit for piezoelectric energy-harvesting systems. We have incorporated these heterostructures into microcantilevers that are actuated with extremely low drive voltage due to thin-film piezoelectric properties that rival bulk PMN-PT single crystals. These epitaxial heterostructures exhibit very large electromechanical coupling for ultrasound medical imaging, microfluidic control, mechanical sensing, and energy harvesting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据