4.8 Article

Tunable Field Control Over the Binding Energy of Single Dopants by a Charged Vacancy in GaAs

期刊

SCIENCE
卷 330, 期 6012, 页码 1807-1810

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1197434

关键词

-

资金

  1. Arnold and Mabel Beckman Foundation
  2. Center for Emergent Materials at Ohio State University, an NSF Materials Research Science and Engineering Center [DMR-0820414]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Materials Research [820414] Funding Source: National Science Foundation

向作者/读者索取更多资源

Local manipulation of electric fields at the atomic scale may enable new methods for quantum transport and creates new opportunities for field control of ferromagnetism and spin-based quantum information processing in semiconductors. We used a scanning tunneling microscope to position charged arsenic (As) vacancies in the gallium arsenide 110 [GaAs(110)] surface with atomic precision, thereby tuning the local electrostatic field experienced by single manganese (Mn) acceptors. The effects of this field are quantified by measuring the shift of an acceptor state within the band gap of GaAs. Experiments with varying tip-induced band-bending conditions suggest a large binding energy for surface-layer Mn, which is reduced by direct Coulomb repulsion when the As vacancy is moved nearby.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据