4.8 Article

Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene

期刊

SCIENCE
卷 330, 期 6006, 页码 946-948

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1196893

关键词

-

资金

  1. NSF [CMMI-0825771, CMMI-0855853]
  2. Nanoelectronics Research Initiative through Brown University's Materials Research Science and Engineering Center
  3. TeraGrid Advanced Support Program [TG-DMR090098]
  4. Center for Computation and Visualization at Brown University

向作者/读者索取更多资源

Graphene in its pristine form is one of the strongest materials tested, but defects influence its strength. Using atomistic calculations, we find that, counter to standard reasoning, graphene sheets with large-angle tilt boundaries that have a high density of defects are as strong as the pristine material and, unexpectedly, are much stronger than those with low-angle boundaries having fewer defects. We show that this trend is not explained by continuum fracture models but can be understood by considering the critical bonds in the strained seven-membered carbon rings that lead to failure; the large-angle boundaries are stronger because they are able to better accommodate these strained rings. Our results provide guidelines for designing growth methods to obtain sheets with strengths close to that of pristine graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据