4.6 Article

Mesoporous NiCu-CeO2 oxide catalysts for high-temperature water-gas shift reaction

期刊

RSC ADVANCES
卷 5, 期 2, 页码 1430-1437

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra13142h

关键词

-

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2013R1A1A1A05007370]
  2. Korea Ministry of Environment (MOE)

向作者/读者索取更多资源

Mesoporous NiCu-CeO2 oxide catalysts were synthesized by using the evaporation-induced self-assembly method applied to the high-temperature, water-gas shift reaction (HT-WGS) between 350 to 550 degrees C. Nickel and copper loadings on mesoporous ceria were tailored to achieve high activity and selectivity by suppressing methane formation in HT-WGS. Among the prepared catalysts, NiCu(1 : 4)-CeO2 exhibited the highest selectivity to CO2 and H-2 with 85% CO conversion at a very high GHSV of 83 665 h(-1). The higher activity of the catalysts was due to the mesoporous architecture, which provides more accessible active sites for the WGS reaction. Powder X-ray diffraction (XRD), small angle X-ray scattering (SAXS), N-2-adsorption/desorption isotherm, high-resolution transmission electron microscopy (HR-TEM), and H-2-temperature-programmed reduction (TPR) techniques were used to understand the role of mesoporosity and bimetallic composition of various NiCu-CeO2 oxides in enhancing catalytic activity for HT-WGS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据