4.8 Article

High-Temperature Superconductivity in a Single Copper-Oxygen Plane

期刊

SCIENCE
卷 326, 期 5953, 页码 699-702

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1178863

关键词

-

资金

  1. U. S. Department of Energy [MA-509-MACA]

向作者/读者索取更多资源

The question of how thin cuprate layers can be while still retaining high-temperature superconductivity (HTS) has been challenging to address, in part because experimental studies require the synthesis of near-perfect ultrathin HTS layers and ways to profile the superconducting properties such as the critical temperature and the superfluid density across interfaces with atomic resolution. We used atomic-layer molecular beam epitaxy to synthesize bilayers of a cuprate metal (La1.65Sr0.45CuO4) and a cuprate insulator (La2CuO4) in which each layer is just three unit cells thick. We selectively doped layers with isovalent Zn atoms, which suppress superconductivity and act as markers, to show that this interface HTS occurs within a single CuO2 plane. This approach may also be useful in fabricating HTS devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据