4.6 Article

Testing particle trapping in transition disks with ALMA

期刊

ASTRONOMY & ASTROPHYSICS
卷 584, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201526655

关键词

protoplanetary disks; circumstellar matter; planets and satellites: formation

资金

  1. Netherlands Research School for Astronomy (NOVA)
  2. Royal Netherlands Academy of Arts and Sciences (KNAW) professor prize
  3. European Union A-ERC [291141 CHEMPLAN]
  4. NASA Origins of Solar Systems grant [NNX12AJ04G]
  5. NASA [NNX12AJ04G, 21549] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Some protoplanetary disks show evidence of inner dust cavities. Recent observations of gas and dust of these so-called transition disks support the hypothesis that these cavities originate from particle trapping in pressure bumps. We present new Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at 336 GHz of two transition disks, SR21 and HD 135344B. In combination with previous ALMA observations from Cycle 0 at 689 GHz, we compare the visibility profiles at the two frequencies and calculate the spectral index (alpha(mm)). The observations of SR 21 show a clear shift in the visibility nulls, indicating radial variations of the inner edge of the cavity at the two wavelengths. Notable radial variations of the spectral index are also detected for SR 21 with values of alpha(mm) similar to 3.8-4.2 in the inner region (r less than or similar to 35 AU) and alpha(mm) similar to 2.6-3.0 outside. An axisymmetric ring (which we call the ring model) or a ring with the addition of an azimuthal Gaussian profile, for mimicking a vortex structure (which we call the vortex model), is assumed for fitting the disk morphology. For SR 21, the ring model better fits the emission at 336 GHz, conversely the vortex model better fits the 689 GHz emission. For HD 135344B, neither a significant shift in the null of the visibilities nor radial variations of alpha(mm) are detected. Furthermore, for HD 135344B, the vortex model fits both frequencies better than the ring model. However, the azimuthal extent of the vortex increases with wavelength, contrary to model predictions for particle trapping by anticyclonic vortices. For both disks, the azimuthal variations of alpha(mm) remain uncertain to confirm azimuthal trapping. The comparison of the current data with a generic model of dust evolution that includes planet-disk interaction suggests that particles in the outer disk of SR 21 have grown to millimetre sizes and have accumulated in a radial pressure bump, whereas with the current resolution there is not clear evidence of radial trapping in HD 135344B, although it cannot be excluded either.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据