4.6 Article

P34HB film promotes cell adhesion, in vitro proliferation, and in vivo cartilage repair

期刊

RSC ADVANCES
卷 5, 期 28, 页码 21572-21579

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra02016f

关键词

-

资金

  1. National Natural Science Foundation of China [81470721, 31170929]
  2. Sichuan Science and Technology Innovation Team [2014TD0001]
  3. State Key Laboratory of Oral Diseases [SKLOD201405]

向作者/读者索取更多资源

The management of chondral defects is a challenging topic of current interest for scientists and surgeons, which has a crucial impact on human cost. Even after several centuries after its first observation, this problem has still not found a satisfactory and definitive answer. Cartilage tissue engineering, which involves novel natural scaffolds, has emerged as a promising strategy for cartilage regeneration and repair. In this study, bio-plasticpoly-3-hydroxybutyrate-4-hydroxybutyrate (P34HB) film was first fabricated. The characteristics of P34HB film were tested using SEM and AFM. Cell morphologies on P34HB film were obtained using SEM and fluorescence microscopy after cell seeding. The tests of cell adhesion and proliferation on P34HB film were conducted using MTT and CCK-8 assays, respectively. Furthermore, full cartilage defects in rats were created and P34HB films were implanted to evaluate their healing effects within 8 weeks. It was found that P34HB film, as a biomaterial implant, possessed good in vitro properties for cell adhesion, migration, and proliferation. Importantly, in the in vivo experiment, P34HB film exhibited desirable healing outcomes. These results demonstrated that P34HB film was a good scaffold for cartilage tissue engineering for improving cell proliferation and adhesion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据