4.6 Article

The Gaia-ESO Survey: characterisation of the [α/Fe] sequences in the Milky Way discs

期刊

ASTRONOMY & ASTROPHYSICS
卷 582, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201526258

关键词

Galaxy: abundances; Galaxy: stellar content; Galaxy: evolution; Galaxy: kinematics and dynamics; Galaxy: disk; stars: abundances

资金

  1. NSF [OIA-1124403, 1066293]
  2. Swedish Research Council (VR) [621-2009-3911]
  3. Knut and Alice Wallenberg foundation
  4. Swedish National Space Board (SNSB)
  5. Fundacao para a Ciencia e a Tecnologia, FCT (Portugal) [SFRH/BPD/70574/2010]
  6. Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence Origin and Structure of the Universe
  7. La Silla Paranal Observatory [188.B-3002]
  8. UK Science and Technology Facilities Council
  9. European Union FP7 programme through ERC [320360]
  10. Leverhulme Trust [RPG-2012-541]
  11. INAF
  12. Ministero dell' Istruzione, dell' Universita' e della Ricerca (MIUR)
  13. STFC [ST/K000985/1, ST/M007626/1, ST/J00541X/1] Funding Source: UKRI
  14. Science and Technology Facilities Council [ST/K000985/1, ST/J00541X/1, ST/M007626/1] Funding Source: researchfish
  15. UK Space Agency [ST/N000641/1] Funding Source: researchfish

向作者/读者索取更多资源

Context. High-resolution spectroscopic surveys of stars indicate that the Milky Way thin and thick discs follow different paths in the chemical space defined by [alpha/Fe] vs. [Fe/H], possibly suggesting different formation mechanisms for each of these structures. Aims. We investigate, using the Gaia-ESO Survey internal Data-Release 2, the properties of the double sequence of the Milky Way discs, which are defined chemically as the high-alpha and low-alpha populations. We discuss their compatibility with discs defined by other means, such as metallicity, kinematics, or positions. Methods. This investigation uses two different approaches: in velocity space, for stars located in the extended solar neighbourhood; and, in chemical space, for stars at different ranges of Galactocentric radii and heights from the Galactic mid-plane. The separation we find in velocity space allows us to investigate, using a novel approach, the extent of metallicity of each of the two chemical sequences, without making any assumption about the shape of their metallicity distribution functions. Then, using the separation in chemical space, adopting the magnesium abundance as a tracer of the alpha-elements, we characterise the spatial variation of the slopes of the [alpha/Fe] [Fe/H] sequences for the thick and thin discs and the way in which the relative proportions of the two discs change across the Galaxy. Results. We find that the thick disc, defined as the stars tracing the high-alpha sequence, extends up to super-solar metallicities ([Fe/H] approximate to + 0.2 dex), and the thin disc, defined as the stars tracing the low-alpha sequence, extends at least down to [Fe/H] approximate to 0.8 dex, with hints pointing towards even lower values. Radial and vertical gradients in alpha-abundances are found for the thin disc, with mild spatial variations in its [alpha/Fe] [Fe/H] paths, whereas for the thick disc we do not detect any spatial variations of this kind. This is in agreement with results obtained recently from other high-resolution spectroscopic surveys. Conclusions. The small variations in the spatial [alpha/Fe] [Fe/H] paths of the thin disc do not allow us to distinguish between formation models of this structure. On the other hand, the lack of radial gradients and [alpha/Fe] [Fe/H] variations for the thick disc indicate that the mechanism responsible for the mixing of metals in the young Galaxy (e.g. radial stellar migration or turbulent gaseous disc) was more efficient before the (present) thin disc started forming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据