4.6 Article

An electrochemical synthesis strategy for composite based ZnO microspheres-Au nanoparticles on reduced graphene oxide for the sensitive detection of hydrazine in water samples

期刊

RSC ADVANCES
卷 5, 期 67, 页码 54379-54386

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra05612h

关键词

-

资金

  1. University Grants Commission, New Delhi [42-911/2013(SR)]
  2. University Grants Commission for a Meritorious Fellowship

向作者/读者索取更多资源

An electrochemical synthesis strategy has been developed to prepare a novel composite viz. reduced graphene oxide nanosheets/ZnO microspheres (similar to 0.6 mm)-Au nanoparticles (similar to 50 nm) modified glassy carbon electrode (GCE/RGO/ZnO-Au) for the trace level detection of hydrazine. Scanning Electron Microscopy (SEM) along with Energy Dispersive X-ray (EDX) analysis, confirming the presence of Au nanoparticles along with globular ZnO microspheres embedded over the entire surface of graphene nanosheets. The electrochemical detection of hydrazine is performed by cyclic voltammetry and chronoamperometry methods. Fascinatingly, the oxidation peak current of hydrazine at RGO/ZnO-Au modified GCE is 4.1 fold higher than that of RGO-Au modified GCE and 2.4 fold higher than ZnO/Au-modified GCE in addition to a favorable lower overpotential at 0.1 V. The chronoamperometric hydrazine sensor shows a very low detection limit of 18 nM with a high sensitivity of 5.54 mu A mu M-1 cm(-2). The excellent analytical parameters of the RGO/ZnO-Au modified electrode over the various related modified electrodes suggest that the electrode can be advantageous for use in trace level detection of hydrazine in several industrial applications with low cost, ease of preparation, repeatability and long-term stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据