4.6 Article

Direct hydroxylation of benzene to phenol with molecular oxygen over vanadium oxide nanospheres and study of its mechanism

期刊

RSC ADVANCES
卷 5, 期 114, 页码 94164-94170

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra17287j

关键词

-

资金

  1. National Nature Science Foundation of China [21103078, 21003069]

向作者/读者索取更多资源

Direct hydroxylation of benzene to phenol using molecular oxygen is a green route with high atom economy but still a great challenge when compared with the existing method of production. The activation of oxygen is necessary and reductive agents were used to activate dioxygen in a so-called reductive activation process. Here, nano vanadium oxides that consist mainly of low valence vanadium to activate dioxygen were prepared under different conditions via a hydrothermal method. Under the optimized conditions, an excellent phenol selectivity of 96.3% with benzene conversion of 4.2% was achieved over the VOC2O4-N-5 without reductive agents. Characterizations revealed that VOC2O4-N-5 was composed of a mesoporous nanosphere structure with medium strong acid sites and low valence vanadium species. A mechanism was proposed as follows: dioxygen was activated by low valence vanadium in VOC2O4-N-5 to produce the active oxygen species which oxidized acetic acid to peracetic acid. Then the active oxygen species was subsequently transferred from peracetic acid to benzene and inserted into the C-H bond to give phenol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据