4.1 Article Proceedings Paper

MUSSEL-MIMETIC ELASTOMERS OF VARIED FUNCTIONALITY DESIGN FOR ELASTOMERIC COMPOSITES

期刊

RUBBER CHEMISTRY AND TECHNOLOGY
卷 85, 期 4, 页码 526-546

出版社

AMER CHEMICAL SOC INC
DOI: 10.5254/rct.12.88927

关键词

-

向作者/读者索取更多资源

Bulk viscoelasticity and tensile behavior are examined for cross-linked compounds made of mussel-mimetic elastomers of varied functionality design. During polymerization, the mussel-mimetic functionalities containing the 3,4-dihydroxyphenyl (or catechol) group can be incorporated at the molecule chain head, along the backbone, and/or at the molecule chain tail. The compounds are either unfilled or filled to the same filler volume fraction with a single filler chosen among carbon black (hydrophobic), precipitated silica (hydrophilic), and titanium oxide (hydrophilic). For polymers bearing multiple mussel-mimetic functional groups, the polymer cold flow resistance becomes significantly enhanced, arising from the strong intermolecular hydrogen bonding interactions. Such strong intermolecular hydrogen-bonding interactions also affect the bulk viscoelasticity and tensile behavior for the cross-linked gum compounds. Because the mussel-mimetic functional groups exhibit obvious affinity to all three types of filler particles, the extent of modification to bulk viscoelasticity and reinforcement for the filled compounds is observed to vary with the distribution of such functionalities along a polymer molecule, the chemical groups immediately next to the catechol group, and the specific type of filler. As expected, microscale filler dispersion is improved from the strong polymer-filler interactions. [doi:10.5254/rct.12.88927]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据